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Summary of Research

1 Improvement of Prismatic Grid Generation

Algorithm

In this fully discrete approach to prismatic grid generation, improvement has

been achieved in the formulation of the marching direction. The marching

direction is obtained from the minimization of the sum of the squares of a

subset of prisms having the marching edge in common. The functional reads:

I, = _ (_',. *k) 2 (1)
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where i is the node to update.

_i is the marching vector.

K is the subset of base triangles whose intersection with the new shell

tangent plane forms the largest convex polygon.
Ak is the surface vector for triangle k.

The marching direction obtained in this manner is always within the

"admissibility cone" (all the volumes of the prisms attached to the marching

vector are positive). However, it has been found numerically, by marching a

large number of shells that the triangle "quality" was degrading with march-

ing distance. Triangle "quality" is defined here as the smallest ratio of two

adjacent edges in the triangularization.
A modification of the functional has been introduced which maintains

the marching direction within the admissibility cone, but improves, as indi-

cated by numerical experimentation, the mesh quality, and yields a stable

asymptotic state.

The new functional reads:

1

], = 2 (2)
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The weighted factor _ has been tested. The best value of a has been
found to be er = 1. The test case consists in the marching spherical shells



from an initially distorted triangular mesh on the sphere of radius R = 1.

Such an initial distortion is shown on figure 1. The modification affects all

the triangles attached to the pole which have been made smaller. Points like

"a" have been moved to "a", %" to %'" , etc... The sphere is "transparent"

and the mesh on the opposite undistorted side is also visible "through" the

sphere.

Figure 2 shows the evolution of triangle "quality" with shell distance.
The shells have been marched to a radius R = 1000 with different step sizes

Ar = 0.1 and 0.025. As can be seen, the quality improves and converges to

a value between 0.4 and 0.5. On the same figure, other weighting factors are

presented that clearly indicate breakdown of regularity with distance.

In conclusion, an improved scheme for the prismatic grid marching algo-

rithm has been introduced which exhibits good asymptotic behavior without

increasing the algorithm complexity. This new formulation improves the ro-

bustness of the method.

2 Prism/Tetrahedral Hybrid Approach

A viscous flow solution procedure for complex bodies using the prismatic grid

in combination with tetrahedral grid is considered.

Step 1: A prismatic grid is generated to discretize the viscous region of

the flow field. A grid generation algorithm is developed to accomplish this
task.

Step 2: A tetrahedral grid is generated from the outer layer of the pris-

matic grid to the far field(See figure 3). The tetrahedra are meant for dis-

cretizing the inviscid flow field. An off-the-shelf tetrahedral grid genera-

tor(FELISA) is modified to do this job.

Step 3: We can now solve the Navier-Stokes equations on the prismatic

grid and the Euler equations on the tetrahedral grid. A Navier-Stokes solver

will be written for prismatic grids. It will treat the direction normal to

the surface(the structured grid direction) implicitly while treating the other

two directions explicitly. It will be shown that this semi-implicit method

takes less number of iterations and less CPU time than an equivalent ex-

plicit method. The Euler solver will be a simple finite volume solver for a

tetrahedral grid.

An integrated solution will be obtained by passing fluxes conservatively

across the perfectly matching triangulated border between the two grids.



2.0.1 Tetrahedra

A NASA tetrahedral grid generator based on the advancing front, idea, called

FELISA was used to generate tetrahedra shown in figure 3. An outer sur-

face of a prismatic grid around an ellipsoid was provided with a far-field

boundary(another ellipsoid of larger radii). FELISA successfully generated

the required tetrahedra.

Figure .3: Selected tet, rahedra between the outer most layer of a prismatic

grid(solid) and a predefined outer botindary(green/

2.0.2 Prism/Tetrahedral Boundary

The boundary between the prismatic grid and the tetrahedral grid must

match exactly for the flow solution procedure to be conservative. Two mod-

ifications to FELISA will be required in order to make sure that the outer



layer of the prismatic grid matches the initial front of the tetrahedral grid

exactly.

One major modification is required to make sure that FELISA does not

modify the initial front(the outer most surface of the prismatic grid) in its

edge swapping cycle. Edge swapping is done in most advancing front codes

to improve the quality of the tetrahedra where necessary.

The second modification has to do with identifying the boundary and the

common points and faces on the boundary for later use in passing the flux

from one grid to the other. This is mainly a book keeping problem.

2.1 Solution Validation

Two codes were written for method validation. The first code was a 2D

finite difference Navier-Stokes code; written as a test platform to test the

basic ideas such as the treatment of the normal direction implicitly. The

other code was an inviscid solver for three dimensions. The results from

both are presented below.

The following results were obtained from the 2D Navier-Stokes Solver.
Couette Flow:

A solution for the fully developed couette flow was obtained from the

Navier-Stokes solver with the bottom plate fixed and the top plate moving

at Mach 0.4 at a Re number of 100. The low Reynolds number allowed the

solution of the equations without the addition of a lot of artificial viscosity,

thus testing the validity of the viscous terms. Figure 4 shows the velocity

vectors in one part of the couette. Note the linear profile which almost

exactly matches the analytic solution.

Flat Plate:

The fiat plate case was computed with the same code with a minimal

amount of fourth order viscosity at M = 0.4 and Re = 500. The velocity

magnitude contours are presented in figure 5. Some oscillations still remain

in the solution and the fourth order viscosity needs more work to get higher

Re solutions.

Three Dimensional Sphere:

The inviscid potential solver was used to compute flow around a sphere.

The solution is presented in figure 6.
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Figure 4: Numerical solution of a fully developed flow in a couette

Figure 5: Numerical solution of viscous flow over a fiat plate



CONTOUR LEVELS

- 16.0000
- 15.0(..)00
- 14.00ffd
- 13.(X)(X)
-12.Oil(X)
- 11 (}00()
• Iqi ()!)i)Q

_' [)iff,(,(i

•6 C)O,OC)Ci

-4 ()00(_(!
-3 ()) 1¢)
- 2 (lO000
-I 0L),_!L,'_
() _,(4_!i;

<+OC_)+,_)
70(_)¢HI
8.0¢X)(X)
9.00000
10.(X)O(X)
I I .(X)(XX)
12.(X)O(X)
13,00Of X)
14.000(_)
15.(_}000
16.(X)O00

Potential Contours on a sphere
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Figure 6: 2D cut from a numerical solution of potential flow over a sphere



Figure 1. Initially distorted shell on unit sphere as seen from north pole.
Undistorted mesh on southern hemisphere is "seen through"
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